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The densities of states in the conduction and valence bands appropriate for the p region of
the junction have been calculated self-consistently in the screened potential and effective-mass
approximations. Such a density of states for one particular band consists of a tail part taken
from the theory of Halperin and Lax, an unperturbed parabolic density of states above the tail,
and a smooth interpolation in between. The use of the unperturbed parabolic band is justified,
since the perturbation technique of Bonch-Bruevich and a straightforward second-order pertur-
bation calculation both show that the distortion of the band due to the presence of impurities at
the concentration employed in a typical laser is less than 5%. Contrary to the generally accept-
ed assumption and Stern’ s calculation using Kane’ s density of states of a long and reasonable
large conduction band tail, our results show that the tail is negligibly small compared to the
valence band tail. On the basis of this calculation, it is concluded that, for a typical laser, the
electron quasi-Fermi level at lasing threshold for temperature above 77 °K should be in the par-
abolic portion of the band and not in the tail as is often assumed without justification. The
approximations of using linear screening for the impurity potentials and the Gaussian statistics
for the impurity distribution which are implied in the density-of-state functions of Kane and of
Halperin and Lax are considered in detail.

I. INTRODUCTION models, using various expressions for the density

These

Calculation of the properties of a semiconductor
laser usually starts by computing the spontaneous
emission rate in the region where the recombina-
tion takes place. Many of the observed charac-
teristics of a GaAs junction laser such as the tem-
perature dependence of the threshold current,!-®
the lasing wavelength shift as a function of injection
current,” the rate,® and the band shape? of the spon-
taneous emission have been interpreted by different

of states involved in the optical transitions.
calculations have been made either with or without
the momentum-conservation selection rule but all
have assumed a constant matrix element for the
radiative transitions, In the calculations with the
selection rule preserved, parabolic densities of
states have been used for both the conduction and
valence bands to compute the recombination rate
and the stimulated emission function either on the



4118 C.

p side of the junction® or within the space-charge
region of the junction.® In the no-selection-rule
approximation, the development of this type of cal-
culation has followed the progress in the theory of
band structure of impure semiconductors. Initially
the parabolic density of states was used®? and later
the effect of band tails taken from Kane’s theory®
was included. The calculations were performed for
the cases where the electrons are thermally injected
into the p region and recombination takes place in
that region. It was found that a smaller current is
required to maintain a given gain and that a closer
agreement is obtained for the gain-current rela-
tionship when the band tails are incorporated in

the calculation,® The density of states is, there-
fore, the primary quantity to be determined and

the calculated results on the properties of spon-
taneous and stimulated emission may very well be
affected by the densities of states used.

The density of states obtained from Kane’s
theory can be expressed in terms of the carrier
screening length when a screened potential is used
to describe the Coulomb interaction of all the charged
particles. Since the screening length also depends
on the density of states, the Fermi level and the
temperature, the problem of determining these
quantities can be solved self-consistently. Stern®
used this method to determine the parameters as-
sociated with the state density function and hence
the spontaneous emission rate as a function of
injection current, We have performed a similar
calculation but using a different expression for the
state density function and a matrix element given
by Dumke!? which takes into account the decrease
in transition probability for electron states with
high crystal momentum. Our density of states
consists of a tail part taken from the theory of
Halperin and Lax,!! also in the form of a screened
potential approximation, and an unperturbed para-
bolic part above the tail. The use of the unper-
turbed parabolic band is justified, since calculations
using perturbation techniques show only a negligible
distortion of the band above the tail because of the
presence of impurities at typical concentrations,

The need for such a calculation is apparent from
several considerations. First, the constant matrix
element may overestimate the total recombination
rates at higher temperature because of the increase
in population in the high momentum states. Second,
it has been shown that,'? owing to the omission of
the kinetic energy of localization in the Thomas-
Fermi treatment, Kane’s theory predicts a sub-
stantially larger total number of states in the tail
than that predicted by the theory of Halperin and
Lax. Third, the effects of acceptors on the con-
duction band tail and the donors on the valence band
tail were not included in Kane’s expression or in
Stern’s calculation. Since the formation of a band

J. HWANG

)

tail results from the potential fluctuation of the
randomly distributed impurities, both the donors
and acceptors should affect either of the two tails.
In the present work, this correlation effect is auto-
matically incorporated when the theory of Halperin
and Lax is used.

In this paper, we compute the densities of states
to be used in the following paper for the calculation
of spontaneous and stimulated spectral functions.
We first construct the density-of-states function
from the band theory of heavily doped crystals
using the effective-mass approximation. The band
shifts due to Coulomb and exchange interactions
are thus taken into account in this formulation. The
calculated results of the densities of states are then
compared with those obtained from Kane’s theory.
It is found that, contrary to the generally accepted
assumption13 and the results of Stern’s calculation,
the conduction band tail spreads much less into the
gap than does the valence band tail. Consequently,
the electron quasi-Fermi level near the threshold
should not be located in the conduction band tail as
is often assumed™ but should be in the parabolic
portion of the band for a typical laser above 77 °K,
Finally, we discuss the approximations of using
the linear screening and Gaussian statistics which
were made by Kane, and Halperin and Lax to obtain
analytical expressions for the density of states
functions.

II. DENSITY-OF-STATES FUNCTIONS

We consider a medium corresponding to the p
layer of the junction containing both donors and
acceptors in such concentrations that the donor
and acceptor bands merge, respectively, with the
conduction and valence bands. * In addition to the
presence of holes, electrons are injected into the
region, I it is assumed that the electron and hole
thermalization times are short compared with their
respective lifetimes, we are dealing with a non-
equilibrium situation associated with considerable
concentrations of electrons and holes, respectively,
in the conduction and valence bands. In the ef-
fective-mass approximation, we can write the
Hamiltonian for the system as H=H, + H,, where

moex () 1y (€Y
( 2m0> 2,;%#,\elT,-TF,|

- i l __e_z_ 1 170
gi(é!F;-Rzi 2§(€IFI'§kI)+NEc’
(1)

with a similar expression for H,.'®* I Eq. (1), the
T;’s and §,’s are the electron and hole coordinates,
the ﬁ s are the positions of the donors and ac- ..
ceptors whose charge states are denoted by z, m;"
is the conduction band effective mass, N’ is the
total number of electrons, and EQ is the energy of
the k=0 state in the pure crystal. A many-electron
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treatment by Wolff!” using a Hamiltonian similar
to H, shows that the system of all electrons in the
conduction band can be approximated by single
electrons moving in the field of the screened im-
purity potentials provided that the whole conduction
band is shifted downward by an amount equal to the
exchange energy EZ and that the effective mass
m: is slightly modified. If we neglect the small
change in »n¢¥, the one-electron Hamiltonian of the
same system can be written as

H,=7*v?% 2m} - E2 +ES + V(R), (2)

where X is the single electron coordinate, and

V (X) is the screened potential of the randomly dis-
tributed impurities, Defining the average of V (X)

as E{ , such that the potential fluctuation about E¢

isv (x) V(X) - ES, we can then express H, as

Hy=-1#V?%/2m* - ES+ES +ES + V' (%) \ 3)

Thus, in the case of no fluctuation [V'(X)=0], the
eigenstates of H, are plane waves, and the density
of states is parabolic for energy E greater than

- E¢ + ES and vanishes completely for E below
E% - E® +ES. Inthe real crystal because of the
random nature of the impurity distribution, V' (X)
at some X will not be equal to zero. When the

V! (%) in question is sufficiently large and attractive,

we expect to find a bound state localized in these
regions. The density of such states is called the
tail state density p% for E<E? — E¢ + ES, Thus,

if we define the conduction band edge energy of the
impure crystal E, as

E,=E- AE,, (4)

where AE, =E¢ — E¢, the density of states in the
conduction band p, (E) for all energies can be ex-
pressed as

p. (E)=p} (E) +pt (E), (5)

where pg ? (E) is the density of states for E> E,. In
computing p?, we treat V/(X) as a perturbation

to the system since the electronic states for E>E,
will not be greatly affected by the presence of the
impurities. Thus, in the approximation that V’ (X)
can be expressed as superposition of all screened

potentials due to individual impurities (linear screen-

ing), a second-order perturbation calculation yields
an expression for p?, (E) %

02 (8)= 5o (1) " (B - B, - 1 Ea.)

+[(E-E,+5Eg N +£]VA Y2 {1+ [(E-E,
+iEq P+t ] V2 (E-E +5iEy.)}, (6)

where Eq, =71°Q%/ 2m¥ £=2me* (N, +ND)/ Qe? is the
mean square of the impurity potential, m is the
electron effective mass, @ is the rec1proca1 screen-
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ing length, and N, and N, are, respectively, the
acceptor and donor concentrations., It can be seen
from Eq. (6) that p? (E) will depend on the impurity
concentration and the injection level since both af-
fect the value of . As an example, we plot in
Fig. 1 as dashed curves the p (E ) and p% (E ) for
a case of N,=6x10"% cm™, N,=3x10" cm™3

Eg. =0.124 eV, and E,, =0.0178 eV (for simplicity,
we have set E, =0 and E, =0 in plotting the curves).
These numbers correspond to approximately the
threshold condition at 300 °K for a typical laser
with a total loss of 100 cm~!,!® Also plotted for
comparison is the parabolic density of states de-
fined by

pd (E)=(1/27%) (2m* /1?32 (E - E, )'72. (7)

It is seen that the deviation between p? (E) and

P (E) for all E- E, >0 is less than 5% in this partic-
ular case. The same small distortion is also true
for the valence band. As the doping increases, the
distortion is bigger, but is less than 10% for a laser
with substrate doping of Np=1x10' cm™3, the
heaviest doped crystal ever used for making reason-
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FIG. 1. Unperturbed and perturbed parabolic densities
of state in the conduction and valence band. The perturbed
curves are calculated from Egs. (6) and (8) using
Np=6x10"% em™®, Np=3x10"% cm =%, £=1.55x10"% eV?,
Eqg.=0.124 eV, and Eg,=0.0178 eV which corresponds
approximately the threshold condition at 300 °K for a
typical laser with a total loss of 100 cm™ !,
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ably good lasers. Hence, we shall set p? (E)=p%(E)
and shall call the density of states above the band
edge as the parabolic density of states in this cal-
culation,

It is interesting to note that Eq. (6) yields a re-
sult close to an expression given by Bonch-Bruevich,!®

P} (E) =pd (B[ :(27m)"/2]x1 /2 ¢7>

X[yya )+ - 1)g (o) +130 () +1_5,4 (¥)],  (8)

where ¥ =E?/4£ | and I's are the Bessel functions
with imaginary argument, Equation (8) is also
plotted, as open circles, in Fig. 1. Since Eq. (8)
is obtained from a more elaborate combination of
perturbation and Green’s-function techniques, one
suspects that other perturbation methods such as
Wolff’s technique!” might also give similar small
distortion of the parabolic band. We therefore
feel justified in using the approximation p? (E)

= pg (E).

Using the Hamiltonian given by Eq. (3), Halperin
and Lax obtained p! (E) by counting the number of
local minima in some particular bound-state
energy calculated variationally using a fixed wave
function, In the case where linear screening for
the impurity atoms and the Gaussian statistics for
the impurity distribution can be approximated,

p! (E) can be expressed as'!

Pt (B)=[(QEg.)*/ £ a(y,) e‘E%cb(uc)/zg ,

where a(u,) and b(u ) are functions of the dimen-
sionless parameter i, = (E, —E)/Eg, and are
tabulated in Ref. 11.

There will be a region just below E =E, in which
Eq. (9) is not valid because of some of the approxi-
mations involved in deriving Eq. (9). We obtain
the density of states in this region by a smooth
but rather arbitrary interpolation. This is achieved
by drawing, on a semilog plot, a straight line which
will be made tangent to pl (E) at one end and p} (E)
at the other, As we shall see, since the total
number of states for E<E, is small compared to
the total number of electrons for most cases, this
uncertainty in the density of states is not expected
to alter greatly our results.

Kane used the same Hamiltonian of Eq. (3) (also
with the assumptions of linear screening and Gaus-
sian statistics) but from the Thomas-Fermi ap-
proach to obtain the density of states in the form®

PL(EN =121 (m})3%(2n, ) 2y (E'/7,), (10)

where 7, =(e?/ €) (4mN,Q™*)/?
and

©)

y)=12 [F (-2 e dz .

Only the donors are thus seen to affect the con-
duction band. Furthermore, the Thomas-Fermi
treatment neglects the kinetic energy of localiza-
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tion which is properly included in the theory of
Halperin and Lax through the variational calcula-
tion, We shall see that as a result of this omission,
Kane's theory predicts a substantially larger tail
density of states than does the theory of Halperin
and Lax,

III. BAND-GAP SHRINKAGE

In the past, the band gap of a pure crystal was
often used in the calculation of spontaneous and
stimulated emission spectra.? % Although the cal-
culated results, except for the peak positions, will
not be so much affected by the exact value of the
energy gap, it is worth pointing out that because of
Coulomb and exchange interactions the band-gap
energy will no longer be equal to that of the pure
crystal. We shall attempt to estimate the change
in energy gap in this section,

From Eq. (4), we see that the effect of Coulomb
and exchange interactions is to shift the whole con-
duction band by AE, =E% — E{., Such an interaction
will also cause a shift of the valence band due to
correlation effects, We shall, however, ignore
this shift of the valence band in our calculation as
did Bonch-Bruevich and Rozman® in their attempt
to account for the absorption edge shift in heavily
doped crystals and Ashin and Rogachev?! in their
interpretation of the electroluminescence data.

Assuming that the same treatment can be applied
to the free holes in the valence band, we find that
the valence band edge E, is shifted from the pure
case EJ by an amount AE, = E¢ +ES and that E,
:Eg +AE,. The energy gap E, of the impure crys-
tal can then be expressed as

EA’ :(E(c)- AEc)-(Eg+AEu)=Eg - (AEc +AEU):
(11)

where E_ = E) — EJ is the energy gap of the pure
crystal,

The band shift owing to exchange effects, E?,
can be estimated from a well-known expression by
Wigner and Seitz in their calculation of cohesive
energy in metals. ? It can be expressed in terms
of the carrier concentration as!® 1% 2

ES =(4/bTy,,) (m¥ e/ 2¢%?),

where b =(4/97)'® and y,, is the ratio of the aver-
age electron spacing (3/4 7N)!/” to the effective
Bohr radius a,=7% ¢/ (mX ¢%) for electrons of con-
centration N in the conduction band. E¢ is thus a
function of the electron concentration. Equation (12)
holds when v, <1. In most of our cases, the con-
dition that y,, <1 is satisfied for electrons but y,, <1
is not well satisfied for holes in the valence band.
Consequently, there will be some uncertainty in the
calculated Ej. The band shift due to Coulomb inter-
action, E{ or E7, is such that both ES and ES will

(12)
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have the same sign. For a screened Coulomb po-
tential and at very large carrier concentrations such
that ¥,, <1 and y,, <1, we have'l

ES=ES=(4me?/€Q®) (N, -Np). (13)

Again, since X, <1 is not quite satisfied, E may
deviate from Ej. In this calculation, we shall as-
sume E{ = ES.

Because of the assumptions used to treat the band
edge shifts, there will inevitably be some uncer-
tainty in the calculation of E,. This will mainly
affect the positions of the spontaneous and absorp-
tion spectra but will not appreciably affect the cal-
culated absorption constant as will be discussed in
paper II. From a comparison of the peak positions
of the experimental and calculated spontaneous
spectra, also to be found in paper II, we find that
the estimated band gap described in this section
agrees with experiment to better than 1%.

IV. COMPUTER CALCULATIONS OF THE DENSITY
OF STATES
The reciprocal screening constant @ under the

assumption of linear screening can be expressed
24

as
. 4meé? [/‘ - of , (E)
Q%= p vpv(E) o5 dE

+£Dc(E):9£§EL@dE:I,

where f, and f, are, respectively, the Fermi func-
tions for holes in the valence band and electrons in
the conduction bands. Since both p,(E) and p, (E)
depend on @, it can be seen from Eq, (14) that the
problem of determining @ and other parameters
such as the carrier concentrations can be solved
self-consistently for a given value of the electron
quasi-Fermi level E,,. The steps have been de-
scribed by Stern.® Briefly, we regard the donor
and acceptor concentrations as the primary input
parameters. The net hole concentration P is
determined from the charge neutrality conditions
P-N=N, -Np. The value of E;,, which gives
the degree of injection, is the variable for each
set of N, and N, at a specified temperature. For
a given E;, and a given temperature, a trial value
of @ is assumed. Since p, and p, are then known,
the electron and hole concentrations and the hole
quasi-Fermi level E;, can be found from an itera-
tion procedure. '* The input E;, and the value of E;,
thus determined are substituted in Eq. (14) and a
new @ is determined., I the new @ is different
from the trial @, it is then used as the trial @ and
the process is continued. The calculation for @
will stop when the difference between the final @
and the preceding @ is equal to 1% of the pre-
ceding @ value, The uncertainty involved in the

(14)
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calculation is 0. 5 meV for E;, and E;;, and is
2x10% ¢m™® for N and P, The integration grid is
0.5 meV in the iteration process. From this cal-
culation, we can determine self-consistently the
values of @, E;,, N, P altogether at the same time
for a given degree of injection represented by E;, .
The calculation was performed with the aid of a
CDC-6600 computer. The following constants ap-
propriate for GaAs were used: m’: =0, 072 ny,

my =0.5 my, and € =12.5, where m, is the free-
electron mass.

V. RESULTS

The density-of-states functions p,(E) given by
Eq. (5) and p! (E) given by Eq. (10) which are cal-
culated self-consistently for an n-type GaAs crystal
doped with N =6x10® cm™® are plotted in Fig. 2.
The extent of the difference between Kane’s theory
and the theory of Halperin and Lax can be clearly
seen, Kane's theory predicts a substantially larger
total number of states in the tail than that predicted
by the theory of Halperin and Lax, i.e., p,(E) de-
creases more rapidly and spreads much less into
the energy gap. In Fig. 3, we compare the shapes
of p, (E) and pJ(E) for N,=6x10" cm~3 and N,
=3x10'® cm™® at an injection level equal to the
threshold of a typical laser with a total loss of

|02°: T T T T
[ 300°K
L Np=6Xx10'8cm-3 ]
IOIS:‘ K -
" - | .
€ C / ,/~ —-— PARABOLIC DENSITY ]
£ B r | OF STATES y
Tr )/ | === CALC. FROM KANE'S
° L / THEORY .
» / —— CALC. FROM THE
W el / ! THEORY OF |
g 10°F // | HALPERIN AND LAXJ
@ E / | —-—INTERPOLATED ]
o r / | CURVE ]
> - / . .
= /
% + / |
g / i
107 / . —
co/ I 3
r/ ]
L/ | i
/
’ | :
| I 4
106 1 L | 1 L ]
-0.10 =005 0 0.05 0.10 0.15
ENERGY (eV)
FIG. 2. Conduction-band densities of states at 300°K

as calculated self-consistently from parabolic, Kane’s,
and Halperin and Lax’s expressions using donor concen-
tration of Np=6x101 cm™,
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consistent densities of states at 300 °K obtained from
different models for N, =6 x 10'® cm™3 and N =3 x 10%
cm™3, The injection level for this calculation is approx-
imately equal to the threshold condition at 300 °K for a
typical laser with a total loss of 100 em™ L,

100 cm~! at 300 °K. The big difference in the struc-
ture of the band tails is again seen for the compen-
sated crystal. The most striking feature of our
results is that the conduction band tail is negligibly
small compared with the valence band tail at all
injection levels. Physically, such a distribution
of the densities of states can be easily understood
from a comparison of carrier screening length with
the effective Bohr radii for electrons and holes.
At all injection levels below the threshold of a typi-
cal laser, the screening length (~20 A) is much
smaller than the Bohr radius for electrons (92 A),
but is greater than the Bohr radius for holes
(13.3 A). Thus, the potential fluctuation which re-
sults in the formation of the tails will be practically
screened out for electrons but not for holes. Our
calculation appears to support a model proposed
earlier by Bagaev et al.? from the uncertainty
principle argument that it is possible to have a
negligible conduction band tail in the active region
for a substrate doping greater than 1x10'® cm™3,
Figure 4 shows the temperature variation of the
electron and hole quasi-Fermi levels at the lasing
threshold for lasers with a total loss of a; =100
and 120 cm™; and N, =6x10* cm™ and N, =3x 10
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cm~? in the active region. The results with band
tails (given by Kane’s theory) and without band tails
are also shown for comparison, The Fermi levels
are referred, respectively, to the conduction and
valence band edges, and they are positive when
measured into the corresponding band, Two im-
portant features should be noted. First, the func-
tional variation of Fermi levels with temperature
is nearly the same for all models. This will have
some effect on the temperature dependence of the
current required to reach a certain gain as will be
seen in paper II, Secondly, our calculation shows
that the electron quasi-Fermi level should be lo-
cated in the parabolic portion of the conduction
band and not in the tail portion. Although Stern’s
calculation using Kane’s model for the band tails
predicts that the electron quasi-Fermi level should
be in the tail below 300 °K in the same case, it is
merely due to the overestimation of the total number
of states in the tail as was pointed out previously.26
A calculation for the cases with N =3x10*® cm™®
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FIG. 4. Temperature dependences of electron and

hole quasi-Fermi levels calculated for Ny — Np (=3 X 108
em™)=3x10'% em™? but using different expressions for
the density of states. The injection level for this cal-
culation is approximately equal to the threshold condi-
tions at 300 °K for two typical lasers with losses of

100 and 120 cm'i, respectively.
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and an N, value ranging from 4x10'® to 8x10'® cm™®
shows that the electron quasi-Fermi levels at the
lasing threshold for temperatures above 77 °K should
not be in the tail for lasers with total loss greater
than 50 cm™?,

The results of this section would appear to throw
some doubt on the validity of earlier work on GaAs
junction lasers. It has been almost invariably as-
sumed, with no justification, that the conduction
band tail is long and large enough to contain the
electron quasi-Fermi level. The analysis of the
experimental data and the theoretical calculation of
the properties of a laser have started from this
presumption. There are usually several arbitrary
constants to adjust so that it has usually been pos-
sible to account for the experimental data by varying
these constants. Take, for example, the good fit
between the experimental and calculated electro-
luminescence spectra at low temperatures using an
exponential conduction-band density of states. 2
Since the electroluminescence at low temperature
and at low bias has now been shown to be due to
radiative tunneling from the » side by electrons and
the p side by holes into the space charge region, 27
the good agreement must be fortuitous and simply
associated with the arbitrary adjustment of the three
parameters (the electron quasi-Fermi level, the
preexponential density of states and the band tailing
constant), Our calculations here show that it is
risky to assume that (i) the electron quasi-Fermi
level is in the conduction band tail in predicting
laser behavior?® or (ii) to explain the observed prop-
erties of a laser'®»'*® a5 was frequently done in
the past.

VI. DISCUSSION OF THE CALCULATION

All the assumptions involved in the calculation
were discussed in Secs. I-IV. Here we turn to
the two most basic assumptions used to obtain the
expressions for the density of states, Eq. (9) or
Eq. (10), in the treatments of Kane, and Halperin
and Lax, i.e., (i) the validity of using linear screen-
ing for each individual impurity potential and (ii)
Gaussian statistics for the random impurity distri-
bution, The assumptions should be good when the
concentrations of carriers and impurities are suf-
ficiently high. However, it is hard to determine
in either case a precise minimum concentration
below which any one of these assumptions ceases
to apply. On the other hand, one could give an in-
jection level above which each assumption is cer-
tain to be valid. The reason for using the injection
level as a parameter is that, for a laser, the total
impurity concentration is fixed and the carrier
screening can only be changed at a fixed tempera-
ture by changing the injected electron concentration.
We shall use the case in which N, =6x10%® cm™3
and N,=3x10" cm™® as an example, However, our
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result in this section should be almost true for any

lasers made from Zn diffusion from a Ga-Zn alloy

source into a substrate doped with Np=3x10'® cm™3,
For linear screening to be valid, the root-mean-

square fluctuation in the total impurity potential

£'”2 should be small compared with the electron or

or hole quasi-Fermi levels'!:

‘51/2 < Efe —Ec ) (15)

or

£1/2< - (th- Ev). (16)

In Fig. 5, we plot the injection levels above which
Eqgs. (15) and (16) are satisfied as a function of
temperature. Linearization in screened potentials
for electrons should be strictly valid in the region
above curve 1 and for holes above curve 3. Also
plotted in the same figure are the values of the
electron and hole quasi-Fermi levels required to
obtain a gain of 100 cm™!, It is seen that linear
screening is really not strictly applicable in a laser
with loss equal to 100 cm™! for electrons and holes
except for electrons near 300 °’K. The reason for
this difficulty is that the total impurity concentration
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is always greater than the sum of the electron and
hole concentrations. It is not clear how the validity
of the linear screening will be affected by the failure
of satisfying Eqs. (15) and (16). Reasonably good
quantitative agreement with experiment, to be de-

scribed in paper II, indicates that the approximation

might not be too bad.

Halperin and Lax!! give an expression for the mini-

mum electron and hole energies below which the
density of states in the tail calculated by using the
Gaussian statistics for the impurity distribution
should not be assured to be valid:

~(E-E,)<Eq [(N4+Ny) Q% 23/

{1-[N4+Np) Q78] 13, an
for electrons and
E-E, < Eq, [N +N,)Q-3]%8/

{1-] W,+Np)Q®] 1}, (18)

for holes. In Fig. 6, we plot (curves 1 and 3) the
right-hand side of Eqs. (17) and (18), respectively,
for 20, 77, and 300 ° K, as functions of an injection
level. The energy region to the right of each curve
gives the energy range in which the density of
states can strictly be calculated using Gaussian
statistics. We also plot (curves 2 and 4) the re-
spective electron and hole energies at which the
density of states is equal to 0.1% (~10* cm™ eV~?)

of the density of states at the conduction band edge
and 1% of the density of states at the valence band
edge. It is seen that at all injection levels, Gaus-
sian statistics can be used to calculate practically
the whole energy range of the conduction band tail,
since the density of states in the tail decreases
rapidly below 10'® cm-% eV~!, This is not true for
the valence band tail even above the energy value
corresponding to 1% of the density of states at the
band edge. This difficulty is due to the fact that
in all cases, while the carrier screening length is
small compared to the Bohr radius for electrons,
it is still large compared to the Bohr radius for

holes, and that the condition for the high-concen-
tration limit is that the screening length should be
small compared to the Bohr radius. Again, even
though we are not certain about the range of validity
of the approximation resulting from using Gaussian
statistics to compute the valence band tail state
density, we have assumed that Gaussian statistics
can be used in our calculation, The good agreement
of the calculated spontaneous emission band shape
in the superradiance region with experiment, to

be described in paper II, should support this as-
sumption.

J. HWANG 2

One important conclusion can be drawn from a
calculation of the conduction band density of states
at 300 °K. At 300 °K, the linear screening and
Gaussian statistics are both valid for electrons and
there should be little uncertainty in the calculated
structure of the conduction band tail, I is therefore
safe to state that for a typical diffused diode with
oz >100 cm™! at 300 °K the conduction band at an
injection level corresponding to the threshold is
negligibly small and that the electron quasi-Fermi
level should be far up in the parabolic portion of
the band,
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